Secondary Iron Mineral Detection via Hyperspectral Unmixing Analysis with Sentinel-2 Imagery
نویسندگان
چکیده
منابع مشابه
Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملLinear Unmixing of Hyperspectral Signals via Wavelet
A pixel in remotely sensed hyperspectral imagery is typically a mixture of multiple electromagnetic radiances from various ground cover materials. Spectral unmixing is a quantitative analysis procedure used to recognize constituent ground cover materials (or endmembers) and obtain their mixing proportions (or abundances) from a mixed pixel. The abundances are typically estimated using the least...
متن کاملMRF Based Spatial Complexity for Hyperspectral Imagery Unmixing
Hyperspectral imagery (HSI) unmixing is a process that decomposes pixel spectra into a collection of constituent spectra (endmembers) and their correspondent abundance fractions. Without knowing any knowledge of HSI data, the unmixing problem is transformed into a blind source separation (BSS) problem. Several methods have been proposed to deal with the problem, like independent component analy...
متن کاملAdaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery
Article history: Received 13 April 2014 Received in revised form 20 June 2014 Accepted 17 July 2014
متن کاملDependent Component Analysis: A Hyperspectral Unmixing Algorithm
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Earth Observation and Geoinformation
سال: 2021
ISSN: 0303-2434
DOI: 10.1016/j.jag.2021.102343